Python for finance cookbook: over 80 powerful recipes for effective financial data analysis (Record no. 21727)

MARC details
000 -LEADER
fixed length control field 05463 a2200229 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230802061013.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230726b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 978-1803243191
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 332.02855133
Item number LEW
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Lewinson, Eryk
245 ## - TITLE STATEMENT
Title Python for finance cookbook: over 80 powerful recipes for effective financial data analysis
250 ## - EDITION STATEMENT
Edition statement 2nd.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Mumbai:
Name of publisher, distributor, etc. Packt Publishing Limited,
Date of publication, distribution, etc. 2022.
300 ## - PHYSICAL DESCRIPTION
Extent xvii., 720 p.
Other physical details ind.
Dimensions 23 cm x 18 cm
500 ## - GENERAL NOTE
General note Recommended By: Banikanta Mishra<br/>--------------------------------------------------
521 ## - TARGET AUDIENCE NOTE
Target audience note Chapter 1: Acquiring Financial Data<br/><br/>Getting data from Yahoo Finance<br/>Getting data from Nasdaq Data Link<br/>Getting data from Intrinio<br/>Getting data from Alpha Vantage<br/>Getting data from CoinGecko<br/>Summary<br/><br/>Chapter 2: Data Preprocessing<br/><br/>Converting prices to returns<br/>Adjusting the returns for inflation<br/>Changing the frequency of time series data<br/>Different ways of imputing missing data<br/>Converting currencies<br/>Different ways of aggregating trade data<br/>Summary<br/><br/>Chapter 3: Visualizing Financial Time Series<br/><br/>Basic visualization of time series data<br/>Visualizing seasonal patterns<br/>Creating interactive visualizations<br/>Creating a candlestick chart<br/>Summary<br/><br/>Chapter 4: Exploring Financial Time Series Data<br/><br/>Outlier detection using rolling statistics<br/>Outlier detection with the Hampel filter<br/>Detecting changepoints in time series<br/>Detecting trends in time series<br/>Detecting patterns in a time series using the Hurst exponent<br/>Investigating stylized facts of asset returns<br/>Summary<br/><br/>Chapter 5: Technical Analysis and Building Interactive Dashboards<br/><br/>Calculating the most popular technical indicators<br/>Downloading the technical indicators<br/>Recognizing candlestick patterns<br/>Building an interactive web app for technical analysis using Streamlit<br/>Deploying the technical analysis app<br/>Summary<br/><br/>Chapter 6: Time Series Analysis and Forecasting<br/><br/>Time series decomposition<br/>Testing for stationarity in time series<br/>Correcting for stationarity in time series<br/>Modeling time series with exponential smoothing methods<br/>Modeling time series with ARIMA class models<br/>Finding the best-fitting ARIMA model with auto-ARIMA<br/>Summary<br/><br/>Chapter 7: Machine Learning-Based Approaches to Time Series Forecasting<br/><br/>Validation methods for time series<br/>Feature engineering for time series<br/>Time series forecasting as reduced regression<br/>Forecasting with Meta’s Prophet<br/>AutoML for time series forecasting with PyCaret<br/>Summary<br/><br/>Chapter 8: Multi-Factor Models<br/>Estimating the CAPM<br/>Estimating the Fama-French three-factor model<br/>Estimating the rolling three-factor model on a portfolio of assets<br/>Estimating the four- and five-factor models<br/>Estimating cross-sectional factor models using the Fama-MacBeth regression<br/>Summary<br/><br/>Chapter 9: Modeling Volatility with GARCH Class Models<br/><br/>Modeling stock returns’ volatility with ARCH models<br/>Modeling stock returns’ volatility with GARCH models<br/>Forecasting volatility using GARCH models<br/>Multivariate volatility forecasting with the CCC-GARCH model<br/>Forecasting the conditional covariance matrix using DCC-GARCH<br/>Summary<br/><br/>Chapter 10: Monte Carlo Simulations in Finance<br/><br/>Simulating stock price dynamics using a geometric Brownian motion<br/>Pricing European options using simulations<br/>Pricing American options with Least Squares Monte Carlo<br/>Pricing American options using QuantLib<br/>Pricing barrier options<br/>Estimating Value-at-Risk using Monte Carlo<br/>Summary<br/><br/>Chapter 11: Asset Allocation<br/>Evaluating an equally-weighted portfolio’s performance<br/>Finding the efficient frontier using Monte Carlo simulations<br/>Finding the efficient frontier using optimization with SciPy<br/>Finding the efficient frontier using convex optimization with CVXPY<br/>Finding the optimal portfolio with Hierarchical Risk Parity<br/>Summary<br/><br/>Chapter 12: Backtesting Trading Strategies<br/><br/>Vectorized backtesting with pandas<br/>Event-driven backtesting with backtrader<br/>Backtesting a long/short strategy based on the RSI<br/>Backtesting a buy/sell strategy based on Bollinger bands<br/>Backtesting a moving average crossover strategy using crypto data<br/>Backtesting a mean-variance portfolio optimization<br/>Summary<br/><br/>Chapter 13: Applied Machine Learning: Identifying Credit Default<br/><br/>Loading data and managing data types<br/>Exploratory data analysis<br/>Splitting data into training and test sets<br/>Identifying and dealing with missing values<br/>Encoding categorical variables<br/>Fitting a decision tree classifier<br/>Organizing the project with pipelines<br/>Tuning hyperparameters using grid searches and cross-validation<br/>Summary<br/><br/>Chapter 14: Advanced Concepts for Machine Learning Projects<br/><br/>Exploring ensemble classifiers<br/>Exploring alternative approaches to encoding categorical features<br/>Investigating different approaches to handling imbalanced data<br/>Leveraging the wisdom of the crowds with stacked ensembles<br/>Bayesian hyperparameter optimization<br/>Investigating feature importance<br/>Exploring feature selection techniques<br/>Exploring explainable AI techniques<br/>Summary<br/><br/>Chapter 15: Deep Learning in Finance<br/>Exploring fastai’s Tabular Learner<br/>Exploring Google’s TabNet<br/>Time series forecasting with Amazon’s DeepAR<br/>Time series forecasting with NeuralProphet<br/>Summary<br/><br/>Index
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Finance Data processing
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Finance Mathematical models
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Python (Computer program language)
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Total Renewals Full call number Barcode Date due Date last seen Date last checked out Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     KEIC KEIC 07/21/2023 Kushal Books 3699.00 IN275 2 1 332.02855133, LEW 22463 09/08/2025 08/11/2025 08/11/2025 7467.00 07/21/2023 Books
Copyrights © MICA KEIC (Knowledge Exchange and Information Centre) 2018. All Right Reserved.

web counter