Python for finance: apply powerful finance models and quantitative analysis with python (Record no. 21728)

MARC details
000 -LEADER
fixed length control field 06336 a2200205 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230802060838.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230726b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 978-1787125698
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number YAN
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Yan, Yuxing
245 ## - TITLE STATEMENT
Title Python for finance: apply powerful finance models and quantitative analysis with python
250 ## - EDITION STATEMENT
Edition statement 2nd.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Mumbai:
Name of publisher, distributor, etc. Packt Publishing Limited,
Date of publication, distribution, etc. 2017.
300 ## - PHYSICAL DESCRIPTION
Extent xvii., 558 p.
Other physical details ref., ind.
Dimensions 24 cm x 18 cm
500 ## - GENERAL NOTE
General note Recommended By: Banikanta Mishra<br/>------------------------------------------------------
521 ## - TARGET AUDIENCE NOTE
Target audience note Content<br/><br/>Chapter 1: Python Basics<br/>Python installation<br/>Variable assignment, empty space, and writing our own programs<br/>Writing a Python function<br/>Python loops<br/>Data input<br/>Data manipulation<br/>Data output<br/>Exercises<br/>Summary<br/><br/>Chapter 2: Introduction to Python Modules<br/>What is a Python module?<br/>Introduction to NumPy<br/>Introduction to SciPy<br/>Introduction to matplotlib<br/>Introduction to statsmodels<br/>Introduction to pandas<br/>Python modules related to finance<br/>Introduction to the pandas_reader module<br/>Two financial calculators<br/>How to install a Python module<br/>Module dependency<br/>Exercises<br/>Summary<br/><br/>Chapter 3: Time Value of Money<br/>Introduction to time value of money<br/>Writing a financial calculator in Python<br/>Definition of NPV and NPV rule<br/>Definition of IRR and IRR rule<br/>Definition of payback period and payback period rule<br/>Writing your own financial calculator in Python<br/>Two general formulae for many functions<br/>Exercises<br/>Summary<br/>Chapter 4: Sources of Data<br/>Diving into deeper concepts<br/>Summary<br/><br/>Chapter 5: Bond and Stock Valuation<br/>Introduction to interest rates<br/>Term structure of interest rates<br/>Bond evaluation<br/>Stock valuation<br/>A new data type – dictionary<br/>Summary<br/><br/>Chapter 6: Capital Asset Pricing Model<br/>Introduction to CAPM<br/>Moving beta<br/>Adjusted beta<br/>Extracting output data<br/>Simple string manipulation<br/>Python via Canopy<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 7: Multifactor Models and Performance Measures<br/>Introduction to the Fama-French three-factor model<br/>Fama-French three-factor model<br/>Fama-French-Carhart four-factor model and Fama-French five-factor model<br/>Implementation of Dimson (1979) adjustment for beta<br/>Performance measures<br/>How to merge different datasets<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 8: Time-Series Analysis<br/>Introduction to time-series analysis<br/>Merging datasets based on a date variable<br/>Understanding the interpolation technique<br/>Tests of normality<br/>52-week high and low trading strategy<br/>Estimating Roll's spread<br/>Estimating Amihud's illiquidity<br/>Estimating Pastor and Stambaugh (2003) liquidity measure<br/>Fama-MacBeth regression<br/>Durbin-Watson<br/>Python for high-frequency data<br/>Spread estimated based on high-frequency data<br/>Introduction to CRSP<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 9: Portfolio Theory<br/>Introduction to portfolio theory<br/>A 2-stock portfolio<br/>Optimization – minimization<br/>Forming an n-stock portfolio<br/>Constructing an optimal portfolio<br/>Constructing an efficient frontier with n stocks<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 10: Options and Futures<br/>Introducing futures<br/>Payoff and profit/loss functions for call and put options<br/>European versus American options<br/>Black-Scholes-Merton option model on non-dividend paying stocks<br/>Generating our own module p4f<br/>European options with known dividends<br/>Various trading strategies<br/>Put-call parity and its graphic presentation<br/>Binomial tree and its graphic presentation<br/>Hedging strategies<br/>Implied volatility<br/>Binary-search<br/>Retrieving option data from Yahoo! Finance<br/>Volatility smile and skewness<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 11: Value at Risk<br/>Introduction to VaR<br/>Normality tests<br/>Skewness and kurtosis<br/>Modified VaR<br/>VaR based on sorted historical returns<br/>Simulation and VaR<br/>VaR for portfolios<br/>Backtesting and stress testing<br/>Expected shortfall<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 12: Monte Carlo Simulation<br/>Importance of Monte Carlo Simulation<br/>Generating random numbers from a standard normal distribution<br/>Generating random numbers with a seed<br/>Generating random numbers from a uniform distribution<br/>Using simulation to estimate the pi value<br/>Generating random numbers from a Poisson distribution<br/>Selecting m stocks randomly from n given stocks<br/>With/without replacements<br/>Distribution of annual returns<br/>Simulation of stock price movements<br/>Graphical presentation of stock prices at options' maturity dates<br/>Replicating a Black-Scholes-Merton call using simulation<br/>Liking two methods for VaR using simulation<br/>Capital budgeting with Monte Carlo Simulation<br/>Python SimPy module<br/>Comparison between two social policies – basic income and basic job<br/>Finding an efficient frontier based on two stocks by using simulation<br/>Constructing an efficient frontier with n stocks<br/>Long-term return forecasting<br/>Efficiency, Quasi-Monte Carlo, and Sobol sequences<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 13: Credit Risk Analysis<br/>Introduction to credit risk analysis<br/>Credit rating<br/>Credit spread<br/>YIELD of AAA-rated bond, Altman Z-score<br/>Using the KMV model to estimate the market value of total assets and its volatility<br/>Term structure of interest rate<br/>Distance to default<br/>Credit default swap<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 14: Exotic Options<br/>European, American, and Bermuda options<br/>Chooser options<br/>Shout options<br/>Binary options<br/>Rainbow options<br/>Pricing average options<br/>Pricing barrier options<br/>Barrier in-and-out parity<br/>Graph of up-and-out and up-and-in parity<br/>Pricing lookback options with floating strikes<br/>References<br/>Exercises<br/>Summary<br/><br/>Chapter 15: Volatility, Implied Volatility, ARCH, and GARCH<br/>Conventional volatility measure – standard deviation<br/>Tests of normality<br/>Estimating fat tails<br/>Lower partial standard deviation and Sortino ratio<br/>Test of equivalency of volatility over two periods<br/>Test of heteroskedasticity, Breusch, and Pagan<br/>Volatility smile and skewness<br/>Graphical presentation of volatility clustering<br/>The ARCH model<br/>Simulating an ARCH (1) process<br/>The GARCH model<br/>Simulating a GARCH process<br/>Simulating a GARCH (p,q) process using modified garchSim()<br/>GJR_GARCH by Glosten, Jagannanthan, and Runkle<br/>References<br/>Exercises<br/>Summary
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Big Data and Business Intelligence
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     KEIC KEIC 07/21/2023 Kushal Books 1899.00 IN275   005.133, YAN 22462 10/13/2024 7467.00 07/21/2023 Books
Copyrights © MICA KEIC (Knowledge Exchange and Information Centre) 2018. All Right Reserved.

web counter