Regression analysis by example (Record no. 21815)

MARC details
000 -LEADER
fixed length control field 06857 a2200229 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230927053628.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230924b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 978-8126545667
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 519.536
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Chatterjee, Samprit
245 ## - TITLE STATEMENT
Title Regression analysis by example
250 ## - EDITION STATEMENT
Edition statement 5th
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York:
Name of publisher, distributor, etc. John Wiley & Sons,
Date of publication, distribution, etc. 2014.
300 ## - PHYSICAL DESCRIPTION
Extent xv, 393p., app., ref., ind., 24 cm X 18 cm
490 ## - SERIES STATEMENT
Series statement Wiley series in probability and statistics
500 ## - GENERAL NOTE
General note Recommended by: Banikanta Mishra
521 ## - TARGET AUDIENCE NOTE
Target audience note Preface xiv<br/>1 Introduction 1<br/><br/>1.1 What Is Regression Analysis? 1<br/><br/>1.2 Publicly Available Data Sets 2<br/><br/>1.3 Selected Applications of Regression Analysis 3<br/><br/>1.4 Steps in Regression Analysis 13<br/><br/>1.5 Scope and Organization of the Book 21<br/><br/>Exercises 23<br/><br/>2 Simple Linear Regression 25<br/><br/>2.1 Introduction 25<br/><br/>2.2 Covariance and Correlation Coefficient 25<br/><br/>2.3 Example: Computer Repair Data 30<br/><br/>2.4 The Simple Linear Regression Model 32<br/><br/>2.5 Parameter Estimation 33<br/><br/>2.6 Tests of Hypotheses 36<br/><br/>2.7 Confidence Intervals 41<br/><br/>2.8 Predictions 41<br/><br/>2.9 Measuring the Quality of Fit 43<br/><br/>2.10 Regression Line Through the Origin 46<br/><br/>2.11 Trivial Regression Models 48<br/><br/>2.12 Bibliographic Notes 49<br/><br/>Exercises 49<br/><br/>3 Multiple Linear Regression 57<br/><br/>3.1 Introduction 57<br/><br/>3.2 Description of the Data and Model 57<br/><br/>3.3 Example: Supervisor Performance Data 58<br/><br/>3.4 Parameter Estimation 61<br/><br/>3.5 Interpretations of Regression Coefficients 62<br/><br/>3.6 Centering and Scaling 64<br/><br/>3.7 Properties of the Least Squares Estimators 67<br/><br/>3.8 Multiple Correlation Coefficient 68<br/><br/>3.9 Inference for Individual Regression Coefficients 69<br/><br/>3.10 Tests of Hypotheses in a Linear Model 71<br/><br/>3.11 Predictions 81<br/><br/>3.12 Summary 82<br/><br/>Exercises 82<br/><br/>Appendix: Multiple Regression in Matrix Notation 89<br/><br/>4 Regression Diagnostics: Detection of Model Violations 93<br/><br/>4.1 Introduction 93<br/><br/>4.2 The Standard Regression Assumptions 94<br/><br/>4.3 Various Types of Residuals 96<br/><br/>4.4 Graphical Methods 98<br/><br/>4.5 Graphs Before Fitting a Model 101<br/><br/>4.6 Graphs After Fitting a Model 105<br/><br/>4.7 Checking Linearity and Normality Assumptions 105<br/><br/>4.8 Leverage, Influence, and Outliers 106<br/><br/>4.9 Measures of Influence 111<br/><br/>4.10 The Potential-Residual Plot 115<br/><br/>4.11 What to Do with the Outliers? 116<br/><br/>4.12 Role of Variables in a Regression Equation 117<br/><br/>4.13 Effects of an Additional Predictor 122<br/><br/>4.14 Robust Regression 123<br/><br/>Exercises 123<br/><br/>5 Qualitative Variables as Predictors 129<br/><br/>5.1 Introduction 129<br/><br/>5.2 Salary Survey Data 130<br/><br/>5.3 Interaction Variables 133<br/><br/>5.4 Systems of Regression Equations 136<br/><br/>5.5 Other Applications of Indicator Variables 147<br/><br/>5.6 Seasonality 148<br/><br/>5.7 Stability of Regression Parameters Over Time 149<br/><br/>Exercises 151<br/><br/>6 Transformation of Variables 163<br/><br/>6.1 Introduction 163<br/><br/>6.2 Transformations to Achieve Linearity 165<br/><br/>6.3 Bacteria Deaths Due to XRay Radiation 167<br/><br/>6.4 Transformations to Stabilize Variance 171<br/><br/>6.5 Detection of Heteroscedastic Errors 176<br/><br/>6.6 Removal of Heteroscedasticity 178<br/><br/>6.7 Weighted Least Squares 179<br/><br/>6.8 Logarithmic Transformation of Data 180<br/><br/>6.9 Power Transformation 181<br/><br/>6.10 Summary 185<br/><br/>Exercises 186<br/><br/>7 Weighted Least Squares 191<br/><br/>7.1 Introduction 191<br/><br/>7.2 Heteroscedastic Models 192<br/><br/>7.3 Two-Stage Estimation 195<br/><br/>7.4 Education Expenditure Data 197<br/><br/>7.5 Fitting a Dose-Response Relationship Curve 206<br/><br/>Exercises 208<br/><br/>8 The Problem of Correlated Errors 209<br/><br/>8.1 Introduction: Autocorrelation 209<br/><br/>8.2 Consumer Expenditure and Money Stock 210<br/><br/>8.3 Durbin-Watson Statistic 212<br/><br/>8.4 Removal of Autocorrelation by Transformation 214<br/><br/>8.5 Iterative Estimation With Autocorrelated Errors 216<br/><br/>8.6 Autocorrelation and Missing Variables 217<br/><br/>8.7 Analysis of Housing Starts 218<br/><br/>8.8 Limitations of Durbin-Watson Statistic 222<br/><br/>8.9 Indicator Variables to Remove Seasonality 223<br/><br/>8.10 Regressing Two Time Series 226<br/><br/>Exercises 228<br/><br/>9 Analysis of Collinear Data 233<br/><br/>9.1 Introduction 233<br/><br/>9.2 Effects of Collinearity on Inference 234<br/><br/>9.3 Effects of Collinearity on Forecasting 240<br/><br/>9.4 Detection of Collinearity 245<br/><br/>Exercises 254<br/><br/>10 Working With Collinear Data 259<br/><br/>10.1 Introduction 259<br/><br/>10.2 Principal Components 259<br/><br/>10.3 Computations Using Principal Components 263<br/><br/>10.4 Imposing Constraints 263<br/><br/>10.5 Searching for Linear Functions of the β’s 267<br/><br/>10.6 Biased Estimation of Regression Coefficients 272<br/><br/>10.7 Principal Components Regression 272<br/><br/>10.8 Reduction of Collinearity in the Estimation Data 274<br/><br/>10.9 Constraints on the Regression Coefficients 276<br/><br/>10.10 Principal Components Regression: A Caution 277<br/><br/>10.11 Ridge Regression 280<br/><br/>10.12 Estimation by the Ridge Method 281<br/><br/>10.13 Ridge Regression: Some Remarks 285<br/><br/>10.14 Summary 287<br/><br/>10.15 Bibliographic Notes 288<br/><br/>Exercises 288<br/><br/>Appendix 10.A: Principal Components 291<br/><br/>Appendix 10.B: Ridge Regression 294<br/><br/>Appendix 10.C: Surrogate Ridge Regression 297<br/><br/>11 Variable Selection Procedures 299<br/><br/>11.1 Introduction 299<br/><br/>11.2 Formulation of the Problem 300<br/><br/>11.3 Consequences of Variables Deletion 300<br/><br/>11.4 Uses of Regression Equations 302<br/><br/>11.5 Criteria for Evaluating Equations 303<br/><br/>11.6 Collinearity and Variable Selection 306<br/><br/>11.7 Evaluating All Possible Equations 306<br/><br/>11.8 Variable Selection Procedures 307<br/><br/>11.9 General Remarks on Variable Selection Methods 309<br/><br/>11.10 A Study of Supervisor Performance 310<br/><br/>11.11 Variable Selection With Collinear Data 314<br/><br/>11.12 The Homicide Data 314<br/><br/>11.13 Variable Selection Using Ridge Regression 317<br/><br/>11.14 Selection of Variables in an Air Pollution Study 318<br/><br/>11.15 A Possible Strategy for Fitting Regression Models 326<br/><br/>11.16 Bibliographic Notes 327<br/><br/>Exercises 328<br/><br/>Appendix: Effects of Incorrect Model Specifications 332<br/><br/>12 Logistic Regression 335<br/><br/>12.1 Introduction 335<br/><br/>12.2 Modeling Qualitative Data 336<br/><br/>12.3 The Logit Model 336<br/><br/>12.4 Example: Estimating Probability of Bankruptcies 338<br/><br/>12.5 Logistic Regression Diagnostics 341<br/><br/>12.6 Determination of Variables to Retain 342<br/><br/>12.7 Judging the Fit of a Logistic Regression 345<br/><br/>12.8 The Multinomial Logit Model 347<br/><br/>12.8.1 Multinomial Logistic Regression 347<br/><br/>12.9 Classification Problem: Another Approach 354<br/><br/>Exercises 355<br/><br/>13 Further Topics 359<br/><br/>13.1 Introduction 359<br/><br/>13.2 Generalized Linear Model 359<br/><br/>13.3 Poisson Regression Model 360<br/><br/>13.4 Introduction of New Drugs 361<br/><br/>13.5 Robust Regression 363<br/><br/>13.6 Fitting a Quadratic Model 364<br/><br/>13.7 Distribution of PCB in U.S. Bays 366<br/><br/>Exercises 370<br/><br/>Appendix A: Statistical Tables 371<br/><br/>References 381<br/><br/>Index 389
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
General subdivision Regression analysis
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Hadi, Ali S.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Date last checked out Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     KEIC KEIC 09/16/2023 Amazon 4500.00 IN-65 2 519.536 CHA 22577 01/22/2025 01/10/2025 3139.00 09/16/2023 Books
Copyrights © MICA KEIC (Knowledge Exchange and Information Centre) 2018. All Right Reserved.

web counter                                    
                                    

Powered by Koha